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Summary

This paper deals with the distributed infinite-horizon Linear-Quadratic-Gaussian
optimal control problem for continuous-time systems over networks. In particular,
the feedback controller is composed of local control stations, which receive some
measurement data from the plant process and regulates a portion of the input sig-
nal. We provide a solution when the nodes have information on the structural data of
the whole network but takes local actions, and also when only local information on
the network are available to the nodes. The proposed solution is arbitrarily close to
the optimal centralized one (in terms of cost index) when a design parameter is set
sufficiently large. Numerical simulation validate the theoretical results.
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1 INTRODUCTION

Large-scale cyber-physical systems play a fundamental role in the current and future era of smart industries, smart cities and
smart homes1. Large-scale systems grasp structures of interconnected subsystems coupled through their dynamics. Among
them, cyber-physical systems feature tightly coupled physical components, as system dynamics, sensors, controllers, environ-
ments, and cyber components, as data, communication, and computation2. Although a lot of efforts have been made in the last
decades, many future generation co-design techniques are still missing in order to successfully cope with disturbances, faults,
threats, and attacks. In this respect, optimal control theory finds its significant value in developing such solutions. Most of the
time, these complex systems are increasingly spatially dispersed over large areas connected through networks, and thus a key
necessary ingredient to control these systems is to built distributed solutions which allow to decentralized physical components,
computation and storage3.A decentralized controller is intended as a feedback controller composed of local control stations,
which receive some measurement data from the plant process and regulates a portion of the input signal. A distributed controller
is composed of local control stations, which receive some measurement data from the plant process and regulates a portion of
the input signal by exchanging data among its neighbors and without the need of converging some information in specific points
of the network. Thus, the main peculiar feature between decentralized and distributed schemes is the distribution of information.
Many solutions have been proposed on these problems, and a comprehensive review has been given in4. Solutions to the

decentralized problem for continuous-time deterministic liner-systems can be tracked back to the 19705,6,7. In8 the robust decen-
tralized control of a general servomechanism is addressed. In9,10 previous results are generalized with time-varying feedback
laws. Amulti-rate distributed solution to state estimation and control has been proposed in11. In recent years, distributed solutions
to the decentralized control problem of some interesting applications has been given for large population multi-agent systems12,
smart grids13, satellite formations14. A parameter optimization approach of a fixed controller structure has been performed in15
for a large flexible space structures.
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On the other hand, distributed schemes make use of the communication capabilities of a network aiming to improve the
performance of the solution. The literature concerning distributed strategies consists of a large number of methods with different
approaches based on the nature of the problem. However, most of these approaches divide the control problem and the estimation
problem, and tackle only one area. In particular, a lot of efforts have been given to the discrete-time distributed Linear Quadratic
Gaussian (LQG) control with communication delays. The LQG problem under one-step delay information sharing pattern has
been solved in16,17,18,19, and some generalizations to other delay structures have been given in20 and21, where a computationally
efficient solution for the LQGoutput-feedback problemwith communication delayswas presented using a state space formulation
and covariance constraints, and the controller is obtained from the corresponding semi-definite programming solution. In22, the
authors consider LQG control with communication delays for the three interconnected systems. While they provide an explicit
solution, their approach is restricted to state-feedback and assumes independence of disturbances acting on each subsystem.
Finally,23 generalizes the latter results to output-feedback and correlated disturbances. In24 a limited number of simultaneous
connections constraint is assumed, in25 a holistic approach is adopted for resource-constrained networked systems, whilst in26 a
cooperative scheme for filtering from relative and absolute distance measurements is presented. Finally, an interesting scalable
(state-feedback) method is proposed in27 and28 presents an explicit solution to a two player distributed LQG problem in which
communication between controllers occurs across a communication link with varying delay. More recently, solutions to the
distributed control problem of some interesting applications has been given for smart grids29, high-speed trains30, unmanned
underwater vehicles31.
To the best of our knowledge, there is still a lack regarding the fundamental problem of the distributed stochastic optimal

regulator in continuous-time, namely a distributed solution which solves the classical Linear-Quadratic control problem for
Gaussian systems over a general structure of interconnections of nodes. In the spirit of some recent advances in the context of
distributed filtering32,33, this paper tackles the infinite-horizon optimal distributed regulator for Gaussian continuous-time linear
systems with partial state information. We shall clarify in the paper what we mean by distributed and the information we assume
each node has.
The paper is organized as follows. The problem is introduced in Section 2 with specifications on the network structure,

assumptions, and other preliminaries. Section 3 solves the distributed infinite-horizon output-feedback control with global infor-
mation on the system matrices, whilst Section 4 addressed a solution with local information on the system matrices. Numerical
simulations (Section 5) validate the theoretical results, and conclusion follows.
Notation.
ℝ denotes the set of real numbers. For a square matrixA, tr(A) is the trace and �(A) is the spectrum.A is said to be Hurwitz stable
if �(A) ⊂ ℂ−, the set of complex numbers with negative real part. E{⋅} denotes expectation.⊗ is the Kronecker product between
vectors or matrices. The operators rowi(), coli(), diagi() denote respectively the horizontal, vertical and diagonal compositions
of matrices and vectors indexed by i. IfA is a squared matrix, we writeA ≥ 0 (A > 0) ifA is positive semi-definite (respectively,
positive definite). We denote by In the identity matrix of size n, by 1n = colni=1(1) the column vector with all entries one, and
by Un = 1n1⊤n the matrix with all entries one. A network, e.g. Fig. 1, is topologically described by a graph  = ( , ) which
defines the information exchange amongN nodes, where  = {1, 2… , N} is the set of vertices representing theN agents and
 ⊆  ×  is the set of edges of the graph. An edge of  is denoted by (i, j), representing that nodes i and j can exchange
information between them. A graph is undirected if the edges (i, j) and (j, i) ∈  are considered to be the same. Two nodes i and
j, with i ≠ j, are neighbors to each other if (i, j) ∈  . The set of neighbors of node i is denoted byi ∶= {j ∈  ∶ (j, i) ∈ }.
A path is a sequence of connected edges in a graph. A graph is connected if there is a path between every pair of vertices. The
adjacency matrix  of a graph  is an N × N matrix, whose (i, j)-th entry is 1 if (i, j) is an edge of  and 0 otherwise. The
degree matrix  of  is a diagonal matrix whose i-th diagonal element is equal to the cardinality of i. The Laplacian of 
is defined to be a N × N matrix  such that  = − + .  is symmetric if and only if the graph is undirected. Moreover,
0 = �1() < �2() ≤⋯ ≤ �N (), where �i() denotes an eigenvalue of, if and only if the graph is connected. An eigenvector
associated to �1() is 1N .
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FIGURE 1 Example of a network diagram for the distributed control of a large-scale plant. In particular, it has been reported
the connections among the filter and/or controller and the plant (system connections), and the connections among neighbors
(network connections).

2 PROBLEM FORMULATION AND PRELIMINARIES

We consider a network described by a graph  = ( , ) together with the system model

ẋ(t) = Ax(t) +
N
∑

i=1
Biui(t) +w(t), (1)

yi(t) = Cix(t) + vi(t), i = 1, … , N, (2)
where x(t) ∈ ℝn is the state of the system, yi(t) ∈ ℝqi , qi ≥ 0, is the measurement received by sensor i-th, ui(t) ∈ ℝpi , pi ≥ 0, is
the input signal sent by sensor i-th, andw(t) and vi(t), i = 1,… , N , are zero-mean white Gaussian noises, mutually independent
with covariances W ≥ 0, Vi > 0 i = 1,… , N , respectively. Also, at the initial time t0, the initial condition x(t0) =∶ x0 is a
Gaussian random vector with mean x̄0 ∶= E{x0} and intensity Σx̄0 .The infinite-horizon cost function J̄ is

J̄ = lim
tf→+∞
t0→−∞

1
tf − t0

J , (3)

with

J = E
⎧

⎪

⎨

⎪

⎩

tf

∫
t0

x⊤(t)Qx(t) +
N
∑

i=1
u⊤i (t)Riui(t)dt

⎫

⎪

⎬

⎪

⎭

, (4)

where Q ≥ 0 and Ri > 0 for all i ∈  .
By defining B = rowi(Bi), C = coli(Ci), R = diagi(Ri) u(t) = coli(ui(t)), y(t) = coli(yi(t)), v(t) = coli(vi(t)), the model

(1)–(2) can be written in a compact form as
ẋ(t) = Ax(t) + Bu(t) +w(t), (5)
y(t) = Cx(t) + v(t), (6)

with the function (4) given by

J = E
⎧

⎪

⎨

⎪

⎩

tf

∫
t0

x⊤(t)Qx(t) + u⊤(t)Ru(t)dt
⎫

⎪

⎬

⎪

⎭

. (7)

We also denote by J̄ (ut) the cost J̄ when the control sequence {u(t)}t≥0 is applied to the plant. In order to design a distributed
optimal output-feedback control, we consider the following assumptions.
Assumption 1. The graph  is undirected and connected.
Assumption 2. The couples (A,B), (A,W 1

2 ) are stabilizable, and the couples (C,A), (Q 1
2 , A) are detectable.
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Assumption 3. Each node i ∈  of the network has information on the matrices A, B, C ,W , V , Q, R.
Assumption 3′. Each node i ∈  of the network has information on the matrices A, Bi, Ci,W , Vi, Q, Ri.

We point out that Assumption 2 is a standard global controllability/observability assumption, and we do not assume anything
for the single pairs (A,Bi) and (Ci, A). Instead, Assumption 3 reflects the paradigm “known-global-act-local" (e.g.34 Ch. 11,35),
in which each node has information on the structural data of the whole network but takes local actions. We shall see in Section
4, how to relax Assumption 3, in particular how to relax the knowledge on the matrices B, C , V , R (Assumption 3′), and to
solve the problem when only local information are available to the nodes of the network.
The aim of this paper is the following.

Goal: Find the distributed optimal output-feedback control policy {ui(t)}t≥0 for each sensor i ∈  , of system (1)–(2) such that
the cost function J defined in (3) is minimized.
We notice that the term distributed refers to the fact that the local controllers make use of a control policy that is implementable

with the local information of the node and the neighbors information (Section 4), where the underlying graph is only connected,
and there is not the need of converging some information in specific points of the network. In particular, the algorithm satisfies
the following linear complexity online constraints on communication and computation1:

1. Local information exchange: for any t ≥ 0 each node i ∈  can exchange information with each j ∈i.
2. Local computation: for any t ≥ 0 the computational load of each node i ∈  should be at most O (

|i|
).

In other words, this means that for any t ≥ 0, each ui(t) can be generated by using the local measurement yi(t) and other data
received from its neighbors j ∈i satisfying the constraints above.
Finally, we recall the following standard result (e.g.36).

Proposition 1. Given a system in the form (5)–(6) with the cost function (3) and J as in (7), under the Assumption 2, the
optimal output-feedback control {u⋆(t)}t≥0 is given by

u⋆(t) = −L x̌(t) (8)
where

L = R−1B⊤S, (9)
with S solution to the algebraic Riccati equation

0 = A⊤S + SA − SBR−1B⊤S +Q, (10)
and x̌(t) is the optimal estimate (in the minimum variance sense) provided by stationary centralized asymptotic Kalman-Bucy
filter (CKBF), namely

̇̌x(t) = Ax̌(t) + Bu(t) +K(y(t) − Cx̌(t)) (11)
K = PC⊤V −1, (12)

where P is the solution to the algebraic Riccati equation
0 = AP + PA⊤ − PC⊤V −1CP +W . (13)

Finally, the optimal cost J̄ (u⋆t ) is given by
J̄ (u⋆t ) = tr(SW + PL⊤RL). (14)

We also recall that the closed-loop dynamic matrix of the stationary CKBF (11), namely AC ∶= A − KC , is Hurwitz by
construction under the hypothesis (C,A) detectable (Assumption 2).
Remark 1. We note that the stationary CKBF (11) employs all the measurements yi(t) and all the input signal ui(t) of all the
nodes of the network i ∈  .
With reference to the distributed optimal control problem, because of Remark 1, we refer to (8) and (11) as the centralized

output-feedback LQG regulator.

1excluding off-line computation.
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3 IDEAL DISTRIBUTED LQG REGULATOR

In this section we shall design a distributed counterpart of Proposition 1. We start with the trivial case of state-feedback and
then, we shall see how to extend this solution to the more interesting case when the state is not available.
Over the underlying network described by the graph  and under the assumption of full state information (namely the state

x(t) is available to each node i ∈ ) we can trivially rewrite the control law (8) in a distributed fashion as indicated in the
following lemma.
Lemma 1. Given the system (1) over the graph with the cost function (3), under the Assumption 1–2–3, the optimal distributed
state-feedback control {ui(t)}t≥0 for each node i ∈  , is given by

ui(t) = −Lix(t), (15)
where Li = R−1i BiS is the i-th pi × n row block of the gain L given by (9).
Remark 2. We note that because of Assumption 3, each node i ∈  can compute off-line the gain Li since it can compute
off-line the matrix S solution to (10).
The following theorem solves the infinite-horizon distributed optimal output-feedback control problem.

Theorem 1. Given the system (1)–(2) over the graph , with the cost function (3), under the Assumption 1–2–3, for i ∈  , the
distributed output-feedback control

ûi(t) = −Lix̂i(t), (16)
where Li = R−1i BiS and x̂i(t) given by

̇̂xi(t) = Ax̂i(t) − BLx̂i(t) +Ki(yi(t) − Cix̂i(t)) + 
P
∑

j∈i

(x̂j(t) − x̂i(t)), (17)

with Ki = NPCi⊤V −1
i , P solution of (13), is such that

lim

→+∞

J̄ (ût) = J̄ (u⋆t ), (18)
where ût = {û(t)}t≥0 and û(t) = coli(û1(t),… , ûN (t)), and u⋆t = {u⋆(t)}t≥0 is the control process of the centralized LQG regulator
(8). In particular, there exists 
0 > 0 such that for any 
 > 
0 the cost J̄ (ût) is finite.
In other words, Theorem 1 states that, as the parameter 
 of the filter (21) tends to +∞, the distributed control law (20) is

equivalent to the centralized optimal solution provided by the control law (8).
Remark 3. It is worth noticing that each individual node of the network have no information of the whole control signal applied
to the plant. This is reflected in the term−BLx̂i(t) = −∑N

j=1 BjLj x̂i in the filter equation (21) (which employs the local estimate
x̂i(t) only) that is mimicking the full control term Bû(t) = −

∑N
j=1 BjLj x̂j applied to the plant.

Remark 4. In the papers32,33 the analysis of the filtering algorithm is carried on for autonomous systems, i.e. systems without
control inputs.We notice that if the term−BLx̂i(t) in the filter equation (21) were set toBû(t), then the estimation error dynamics
of the filter (21) would coincide with the one of the filter of32,33, and thus it would follow that the estimate x̂i(t) of (21) would
be asymptotically optimal in the minimum variance sense (as t → +∞ and 
 → +∞), and the optimality of the control policy
(20) would follow by Lemma 1. However, the latter choice is clearly not feasible since each node i ∈  would require the full
control signal û(t) as pointed out in Remark 3. Thus, further analysis is required.
In what follows, we denote the estimation error of the filter of the node i ∈  with ei(t) ∶= x(t) − x̂i(t), the total estimation

error with e(t) ∶= coli(ei(t)), and the total estimation error intensity matrix X(t) ∶= E[e(t)e⊤(t)]. Clearly, X(t) depends on 

(since each x̂i(t) of (21) depends on 
), but we omit this dependence for notational simplicity. Moreover, let XC

∞ ∶= UN ⊗ P ,
with UN defined in the notation section and P solution of (13), be the asymptotic error covariance of N identical CBKFs
implemented at each node using the whole output y(t).
The proof of Theorem 1 is exploited through the following fundamental lemma proved in the Appendix.

Lemma 2. Given the system (1)–(2) over the graph , under the Assumption 1–2–3, with the cost function (3) and the control
law (20), there exists 
0 > 0 such that for any 
 > 
0 the state estimation (21) for each node i ∈  is unbiased and the total
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covariance of the estimation error X(t) is uniformly bounded. Moreover, it holds
lim

→+∞

lim
t→+∞

X(t) = XC
∞ ∶= UN ⊗ P . (19)

In other words, Lemma 2 states that, as 
 → +∞, the covariance matrix of the estimation error of the filter (21) of each node
i ∈  tends asymptotically (i.e. as t→ +∞) to the covariance matrix P of the estimation error of the centralized Kalman-Bucy
filter (11).
Proof of Theorem 1. The thesis follows directly from Lemma 1 and Lemma 2. In fact, Lemma 2 guarantees that the filter (21)
converges as t → +∞ and 
 → +∞ to the CKBF, while Lemma 1 guarantees the optimality of the control law (20) which
minimizes the cost function (3).
We conclude this section with two important remarks.

Remark 5. It is worth remarking that in any discrete-time implementation of the control law (20), and thus of the filter (21),
the value of 
 cannot be chosen arbitrarily large due to discretization issues. Roughly speaking, a larger 
 requires a smaller
integration step that constraints the communication lag among nodes. Consequently, any implementable version of the proposed
solution will suffer a certain performance degradation with respect to the centralized LQG regulator.
Remark 6. The control law is extremely simple to implement and the information exchange among nodes is reduced to a mini-
mum. The matrices L and P can be computed by solving the algebraic Riccati equations (10) and (13), which are of dimension
n × n and do not depend on the graph structure. Clearly, with many sensor and actuator nodes, the size of the pairs (B,R) and
(C, V ) can be large, but BR−1B⊤ and C⊤V −1C is again an n × n matrix. Finally, L and P can be computed off-line.

4 DISTRIBUTED LQG REGULATORWITH LOCAL INFORMATION

In order to implement the control law of Theorem 1 each node i ∈  needs to compute (or to know) the value of the matrices S
and P , that depend on all the nodes of the graph. Although this solution tackles the problem with the paradigm “known-global-
act-local", it may seem to impair a truly distributed computation in which each node has local information only. Thus the aim
of this section is to show how the solution of Theorem 1 can be implemented in a completely distributed manner in order to
solve the problem with the paradigm “known-local-act-local". In particular, we relax Assumption 3 by assuming that each node
i ∈  has only local information as clarified by Assumption 2′ we recall here.
Assumption 3′. Each node i ∈  of the network has information on the matrices A, Bi, Ci,W , Vi, Q, Ri.
In the first place it is worth remarking that the computation of S and P by solving (10) and (13) is trivial, since S and P are

the solution to algebraic equations inℝn×n that does not depend on the size of the graph. Thus, nodes with limited computational
power can easily solve (10) and (13) provided that the values of F ∶= BR−1B⊤ and G ∶= C⊤V −1C are available, respectively.
We note that F can be written as F =

∑N
i=1 BiR

−1
i B

⊤
i and, when measurement noises are independent (which is our case), G

can be expressed similarly with the sum G =
∑N
i=1 C

⊤
i V

−1
i Ci.

A distributed computation of the terms F and G can thus be achieved by resorting to distributed algorithms to compute
aggregate functions over graphs37. In Figure 2 we report an algorithm derived from the Protocol Push-Sum of37 to compute F
and G in a distributed way. Thus, the knowledge of F and G allows to compute the solutions S and P of the algebraic Riccati
equations (10) and (13) exploiting local information only.
Also, there is another critical issue in the implementation of the term BLx̂i(t) in the filter (21) of each node i ∈  . In fact, it

seems that the latter term can be only implemented if each node i ∈  has knowledge on the full matrices B and L. However,
as before, the computation of the product BL can be exploited with local information only. In fact, it is worth remarking that
the equality BL = FS holds true, and both F and S can be computed in a fully distributed way as described above.
We remark that the main difference of the algorithm of Figure 2 with respect to37 is that the communication is supposed to

be point-to-point, whereas the algorithm in Figure 2 assumes that a node can broadcast messages to all its neighbors. The speed
of convergence of the local estimate to the true value of F and G can be analyzed in the light of the results of37. This estimation
step can be executed before the controlling phase for static graphs, or it can be kept running during the operating phase in order
to adjust the value of F and G in presence of a dynamical graph where nodes appear or disconnect. Finally, the value ofN can
be also computed by the same distributed algorithm when it is not known at the nodes.
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Algorithm Broadcast Push-Sum

1: In all nodes set s0,i = BiR−1i B⊤i and w0,i = 0, except for w0,1 = 1.
2: At time 0 each nodes sends (s0,i, w0,i) to itself.
3: At time t each node executes:

1. Let {sr, wr} be the pairs sent to i in round t − 1.
2. Let st,i = ∑

r sr, wt,i =
∑

rwr.
3. Send to all neighbors and to i (yourself):

(

1
|

|

 (i)|
|

+ 1
st,i,

1
|

|

 (i)|
|

+ 1
wt,i

)

4. st,i∕wti is the estimate of G at step t (if wt,i = 0 the estimate is not specified or 0).

FIGURE 2 A modified version of the Push-Sum algorithm of37 that makes possible the distributed computation of F (and G if
s0,i = C⊤

i V
−1
i Ci).
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FIGURE 3 Distributed computation of the trace S solution to the algebraic Riccati equation (10), computed by each node of
the network, when the algorithm Push-Sum of Fig. 2 is employed by the nodes to compute the product BR−1B⊤.

By considering the system model, the graph structure (Fig. 5) and the integration step of Section 5.1, we show in Figure 3 the
evolution of the matrix S (for simplicity we only show the trace), solution to the algebraic Riccati equation (10), computed by
each node of the network, when the algorithm Push-Sum of Fig. 2 is employed by the nodes to compute the product BR−1B⊤
in a distributed way. In particular, Figure 3 shows the convergence towards the trace of the matrix S computed by using global
information.
We conclude this section with a corollary that complete the analysis of the problem.

Corollary 1. Consider the system (1)–(2) over the graph , with the cost function (3), under the Assumption 1–2–3′, for i ∈  ,
and let the distributed output-feedback control be

ûi(t) = −Lix̂i(t), (20)
with Li = R−1i BiS, where S is the solution to (10) when the term F = BR−1B⊤ is computed by each node i ∈  through the
Push-Sum algorithm of Figure 2, and x̂i(t) given by

̇̂xi(t) = Ax̂i(t) − FSx̂i(t) +Ki(yi(t) − Cix̂i(t)) + 
P
∑

j∈i

(x̂j(t) − x̂i(t)), (21)
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with Ki = NPCi⊤V −1
i , where P is the solution to (13) when the term G = C⊤V −1C is computed by each node i ∈  through

the Push-Sum algorithm of Figure 2. Then, it holds
lim

→+∞

J̄ (ût) = J̄ (u⋆t ), (22)
where ût = {û(t)}t≥0 and û(t) = coli(û1(t),… , ûN (t)), and u⋆t = {u⋆(t)}t≥0 is the control process of the centralized LQG regulator
(8). In particular, there exists 
0 > 0 such that for any 
 > 
0 the cost J̄ (ût) is finite.
The proof of this corollary is identical to the one of Theorem 1 by simply taking into account that the limit points of the

approximated F and G through the Push-Sum algorithm converge to the real values of F and G, respectively, and thus the same
happens for the solutions S and P to the Riccati equations (10) and (13), respectively.
Also, Corollary 1 implicitly requires that the computations through the Push-Sum algorithm of F and G are made offline.

However, this is not strictly necessary and online computations of F and G with the corresponding solutions S and P to the
Riccati equations (10) and (13), respectively, can be done.We remark that this latter case does not cause, in general, a degradation
of the performance since we are considering the infinite-horizon case. In fact, even in the ideal case, i.e. when F and G are
available, the steady-state optimal gains L (of the controller) and K (of the filter), computed through the matrices S and P
respectively, are not optimal in the transient phase.
To sum-up:
• offline computation of F and G: through the Push-Sum algorithm each node can compute in a distributed way the values

of F and G.
Pros: once each node has computed F andG, it is possible to compute matrices P and S solutions to the Riccati equations
(10) and (13) (just once) and to implement the distributed regulator that coincides with the ideal regulator of Section 3
(but with the exception that only local information has been exploited).
Cons: a quick pre-processing in order to compute F and G.

• online computation of F and G: the Push-Sum algorithm is kept running in order to compute adaptively in a distributed
way the value of F and G.
Pros: no need of the pre-processing phase; capability of accommodate link insertion or link deactivation (or failure).
Cons: the Push-Sum algorithm needs to be kept running during all the operating phase toughener with the computation
of the matrices P and S.

5 SIMULATION EXAMPLES

In this section we consider two example in order to show the validity of the theoretical results and the effectiveness of the
proposed method: in Section 5.1 we report an academic example in which each node together with its neighbors does not
constitute an observable system, and only the collective observability assumption holds true. In the second example (Section 5.2)
we consider a real-plant example. The examples show the generality of application and the actual effectiveness of the proposed
control design.
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5.1 Academic example
In this academic example we consider the graph  of Figure 5 consisting of nine nodes. The plant (1) is characterized by the
unstable dynamical matrix A2

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.1 0 0 −1 1 0 0 1
2.5 −0.5 −1.6 −1.5 2 0 1.6 1.5
2.6 −0.5 −0.7 −1.5 1.5 0.5 0.5 1.5
−2 0 1 0 −0.1 0 0 0
0 0 0 0 −0.1 0 0 0

−0.5 0 1 0 0.5 −0.5 −1 0
3.8 −0.5 −1.8 −0.5 2 0.5 1.6 0.5
−1 0 0 0 −1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (23)

and the state and output noises have intensityW = 0.09 ⋅ In and Vi = 0.36 with i = 1,… , 9. The output and input matrices of
the nodes are
C1 =

[

0 0 1 0 0 0 0 0
]

, C2 =
[

−2 1 1 1 −1 0 −1 −1
]

C3 =
[

1 0 0 0 0 0 0 0
]

, C4 =
[

−3 1 2 1 −1 0 −1 −1
]

C5 =
[

1 0 −1 0 1 0 1 0
]

, C6 =
[

2 −1 −1 −1 1 1 1 1
]

, C7 =
[

0 0 0 0 1 0 0 0
]

, C8 =
[

1 0 −1 −1 2 0 1 1
]

,

C9 = [0, 0, 1, 1,−1, 0, 0, 0], and Bi = C⊤
i for all i = 1,… , 9. Also, the cost index (3) has Q = I7 and R = I9. This setting is

very general since the couple (A,Bi) (respectively (Ci, A)) is not controllable (respectively observable) for all i ∈  . Also, con-
trollability and observability property are not satisfied even locally, namely the couple (A, rowj∈i∪{i}(Bj)

) is not controllable
for any i ∈  and the couple (colj∈i∪{i}(Cj), A

) is not observable for any i ∈  . However, the hypotheses of Assumption 2
are satisfied, in particular (A,B) is controllable and (C,A) is observable.
When the control laws (20) are applied to the plant, in accordance with the expected cost (3) of the optimal centralized

solution, we define the pseudo-cost function
Ĵ
 (ût) = tr

(

SW + P̂ (
)L⊤RL
)

, (24)
where P̂ (
) is the arithmetic mean of the covariance matrices of the estimation errors of the nodes i ∈  , namely P̂ (
) =
1
N

∑N
i=1Xi(
) with Xi(
) covariance of the estimation error ei(t). Clearly, by mean of the result of Theorem 1, it follows that

lim
→+∞ Ĵ
 (ût) = J̄ (u⋆t ), where u⋆t is the optimal centralized control (8). Figure 4 (right) shows the convergence of Ĵ
 (ût) of (24)
to the optimal cost when 
 tends to infinity, and similarly Figure 4 (left) shows the convergence of the traces of the covariance
of the estimation error of all the nodes towards the optimal value of the trace of the covariance of the centralized Kalman-Bucy
filter.
A simulation with 100 independent realizations of initial condition and noise processes has been also performed with final

time tf = 200 and an Euler-Maruyama approximation scheme with samples Δ = 10−3. The consensus gain parameter is set

 = 200. Table 1 summarizes the results: it shows the a priori optimal values of estimation error and cost, namely the trace of
the covariance of the estimation error of the centralized Kalman-Bucy filter, i.e. tr(P ), and the optimal cost of the centralized
LQG control, i.e. J̄ computed as (14). Moreover, by averaging over the 100 realizations, Table 1 shows the Average Mean
Square Errors of the centralized Kalman-Bucy filter (AMSECKBF) and the mean of the AMSE among the nodes of the network
(AMSEnodes) with its standard deviation (�AMSE). Also, it shows the actual cost of the centralized LQG control J̃C and of the
proposed distributed control J̃D.
Table 1 summarizes the results: it shows the a priori optimal value of estimation error, namely the trace of the covariance of

the estimation error of the centralized Kalman-Bucy filter, i.e. tr(P ), and, by averaging over the 100 realizations, the Average
Mean Square Errors of the centralized Kalman-Bucy filter (AMSECKBF) and the mean of the AMSE among the nodes of the
network (AMSEnodes) with its standard deviation (�AMSE). Also, Table 1 shows the a priori optimal cost of the centralized LQG
control, i.e. J̄ computed as (14) and, by averaging over the 100 realizations, shows the actual cost of the centralized LQG control
J̃C and of the proposed distributed control J̃D.

2A has a positive eigenvalue in 1.1.
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FIGURE 4 Traces of the covariance matrices of the estimation errors tr(Xi) of the nodes and trace of the covariance of the
CKBF tr(P ) (left). Convergence of the pseudo-cost function (24) towards the centralized optimal one. (right).
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FIGURE 5 Communication graph  and its Laplacian matrix .


 tr(P ) AMSECKBF AMSEnodes �AMSE J̄ J̃C J̃D
Example 1 200 3.096 3.142 3.503 0.006 7.113 7.635 9.435
Example 2 50 0.0243 0.0371 0.0596 < 10−5 0.0512 0.0721 0.1658

TABLE 1 A priori optimal values of estimation error and cost, namely the trace of the covariance of the estimation error of the
CKBF, i.e. tr(P ), and the optimal cost of the centralized LQG control, i.e. J̄ computed as (14). Empirical Average Mean Square
Errors of the CKBF (AMSECKBF) and the mean of the AMSE (AMSEnodes) with its standard deviation (�AMSE) of the nodes of
the network. Empirical cost of the centralized LQG control J̃C and of the proposed distributed control J̃D.

5.2 Oscillator
In the second example we consider an oscillator example where the state vector consists of two position and two velocity
components. The plant in the form (1)–(2) is characterized by the marginally stable system

A =

⎡

⎢

⎢

⎢

⎢

⎣

0 −0.5 0 0
0.5 0 0 0
0 0 0 0.5
0 0 −0.5 0

⎤

⎥

⎥

⎥

⎥

⎦

,

Ci =
[

1 0 0 0
]

, i = 1, 6.

Ci =
[

0 1 0 0
]

, i = 4, 8.

Ci =
[

0 0 1 0
]

, i = 2, 7.

Ci =
[

0 0 0 1
]

, i = 3, 5, 9,
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Bi = C⊤
i for all i = 1,… , 9, the same graph of Figure 5, where the state and output noises have intensity W = 0.1 ⋅ In

and Vi = 0.3 with i = 1,… , 9. Also, the cost index (3) has Q = I4 and R = I9. This setting is such that the couple (A,Bi)
(respectively (Ci, A)) is not controllable (respectively observable) for all i ∈  . However, the hypotheses of Assumption 2 are
satisfied, in particular (A,B) is controllable and (C,A) is observable.
A simulation with 100 independent realizations of initial condition and noise processes has been performed with final time

tf = 100 and an Euler-Maruyama approximation scheme with samplesΔ = 10−3. The consensus gain parameter is set to 
 = 50.
The second row of Table 1 summarizes the results: it shows the a priori optimal values of estimation error and cost, namely
the trace of the covariance of the estimation error of the centralized Kalman-Bucy filter, i.e. tr(P ), and the optimal cost of the
centralized LQG control, i.e. J̄ computed as (14). Moreover, by averaging over the 100 realizations, Table 1 shows the Average
Mean Square Errors of the centralized Kalman-Bucy filter (AMSECKBF) and the mean of the AMSE among the nodes of the
network (AMSEnodes) with its standard deviation (�AMSE). Also, it shows the actual cost of the centralized LQG control J̃C and
of the proposed distributed control J̃D.

6 CONCLUSIONS

Further extensions deserve additional investigation, for example the introduction of communications delays or packet
dropouts38,39, link failure40, or polynomial techniques for non-Gaussian noises41,42,43. Also, other future directions are secure
and resilient solutions that account for disturbances, faults, threats, and attacks and/or disturbances. Finally, the proposed con-
trol scheme does not extend trivially to the discrete-time case, as mentioned in Remark 5. Thus, it is of interest to derive a
discrete-time implementation of the proposed solution and to characterize the loss of accuracy and consensus of this discrete-time
counterpart with respect to the optimal case as a function of the size of the discretization interval.

APPENDIX

For what follows, we need to consider the orthonormal transformation T =
(

T1
T2

)

, with T1 = 1
√

N
1⊤N and T2 ∈ ℝ(N−1)×N , such

that
TT ⊤ =

(

0 0
0 Λ

)

where Λ = diag(�2(),… , �N ()), and T ⊤1 = 0 and T ⊤2 = T ⊤2 Λ hold true.

Proof of Lemma 2
Let the control (20) be applied to the plant (1). Omitting time dependencies, the state estimation error ei = x − x̂i of each node
i ∈  is given by

ėi = Aiei + �i − 
P
∑

j∈i

(ei − ej) + ℎi, (1)
where Ai = A −KiCi, ℎi = w −Kivi and the control mismatch �i given by

�i = Bu + BLx̂i = −
N
∑

j=1
BjLjei +

N
∑

j=1
BjLjej . (2)

By noticing that � = col(�i) can be written as

� = −

[(

IN ⊗
N
∑

j=1
BjLj

)

−
(

1N ⊗ rowN
j (BjLj)

)

]

e = −Ξ e, (3)
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with

Ξ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑N
j=1
j≠1

BjLj −B2L2 ⋯ −BNLN

−B1L1
∑N
j=1
j≠2

BjLj ⋯ −BNLN

⋮ ⋮ ⋱ ⋮
−B1L1 −B2L2 ⋯

∑N
j=1
j≠N

BjLj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

we can write the total estimation error e(t) = coli(ei(t)) as
ė =

(diagi{Ai} − 
(⊗ P ) − Ξ
)

e + ℎ (5)
where ℎ(t) = coli(ℎi(t)) has intensity matrixH = E{ℎ(t)ℎ⊤(t)} = UN ⊗W + diagi(Ki)V diagi(K⊤

i ).Moreover, by noticing that (⊗P )XC
∞ = (⊗P )(UN ⊗P ) = 0, and ΞXC

∞ = Ξ (UN ⊗P ) = 1
N
Ξ (UN ⊗In)(UN ⊗P ) = 03,

we obtain that XC
∞ satisfies
0 =

(diagNi=1(AC ) − 
(⊗ P∞) − Ξ
)

XC
∞ +X

C
∞
(diagNi=1(AC ) − 
(⊗ P∞) − Ξ

)⊤ + UN ⊗Q
+ diagNi=1(K∞)(UN ⊗ V )diagNi=1(KT

∞), (6)
and, by introducing the covariance mismatch E ∶= X −XC

∞ we obtain after some manipulations
Ė = AD(
)E + EA⊤D(
) + Σ, (7)

where AD =
(diagi{Ai} − 
(⊗ P ) − Ξ

) and
Σ ∶= N2(IN ⊗ P∞)Gd(IN ⊗ P∞) + UN ⊗ (P∞GP∞) −N(IN ⊗ P∞)Gd(UN ⊗ P∞) −N(UN ⊗ P∞)Gd(IN ⊗ P∞), (8)

with Gi ∶= C⊤
i R

−1
i Ci, Gd ∶= diagi(Gi), and G ∶= C⊤R−1C . Define S ∶= T ⊗ In, where T is defined at the beginning of the

Appendix, and let Ẽ(t) ∶= S E(t)S⊤. By noticing that

G =
N
∑

i=1
Gi =

N
∑

i=1
C⊤
i R

−1
i Ci, (9)

we have after some manipulations
̇̃E = ÃD(
)Ẽ + ẼÃ⊤D(
) +N

2Σ̃, (10)
with4

ÃD(
) =

⎛

⎜

⎜

⎜

⎜

⎝

AC Π1,2 ⋯ Π1,N
Π2,1 Π2,2 − 
�2P ⋯ Π2,N
⋮ ⋮ ⋱ ⋮

ΠN,1 ΠN,2 ⋯ ΠN,N − 
�NP

⎞

⎟

⎟

⎟

⎟

⎠

, (11)

where, for i = 2,… , N and j = 2,… , N , we define5

Π1,j ∶= −
√

N
N
∑

l=1
tj,lPGl − BlLl , (12)

Πj,1 ∶= −
√

N
N
∑

l=1
tj,lPGl , (13)

Πi,j = Πj,i ∶= �i,j(A − BL) −N
N
∑

l=1
ti,ltj,lPGl , (14)

3since Ξ (UN ⊗ In) = 0 because of the structure of Ξ in (4).
4we recall AC = A −KC .5we use ti,j to denote the (i, j)-th element of the matrix T .
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and

Σ̃ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0
0 Σ̃2,2 ⋯ Σ̃2,N
⋮ ⋮ ⋱ ⋮
0 Σ̃N,2 ⋯ Σ̃N,N

⎞

⎟

⎟

⎟

⎟

⎠

, Σ̃i,j = Σ̃j,i ∶=
N
∑

l=1
ti,ltj,lPGlP . (15)

By (11) and the fact that AC is Hurwitz by construction, it is not difficult to see that there exists a 
0 > 0 such that the matrix
ÃD(
) is Hurwitz for all 
 > 
0, and thus the estimate are unbiased. Notice also that since �(ÃD(
)) ∩ �(−Ã⊤D(
)) = ∅ for all

 > 
0, for each 
 > 
0 there exists a unique symmetric solution Ẽ∞(
) to

0 = ÃD(
)Ẽ∞(
) + Ẽ∞(
)Ã⊤D(
) +N
2Σ̃. (16)

The proof is concluded if we show that the asymptotic estimation error intensity Ẽ∞ satisfies
lim

→+∞

Ẽ∞(
) = 0. (17)
In fact, the solution Ẽ∞(
) to (16) can be parametrized in 
 as follows. Let

W1 ∶= rowN
i=2Π1i W2 ∶= colNi=2Π1i (18)

W0 ∶=
⎛

⎜

⎜

⎝

Π2,2 ⋯ Π2,N
⋮ ⋱ ⋮

ΠN,2 ⋯ ΠN,N

⎞

⎟

⎟

⎠

, Λ ∶=
⎛

⎜

⎜

⎝

Σ̃2,2 ⋯ Σ̃2,N
⋮ ⋱ ⋮
Σ̃N,2 ⋯ Σ̃N,N

⎞

⎟

⎟

⎠

. (19)

With this definitions the equation (16) reads out as
(

0 0
0 Λ

)

=
(

AC W1
W2 W0 − 
D ⊗ P∞

)

Ẽ∞(
) + Ẽ∞(
)
(

AC W1
W2 W0 − 
D ⊗ P

)⊤

, (20)

where D = diagNi=2(�i). The solution Ẽ∞(
) is analytic in 
 > 0 and can be written (using a Taylor expansion) as

Ẽ∞(
) =
1



⎛

⎜

⎜

⎝

Y1,1 + O
(

1

2

)

1


Y2,1 + O

(

1

2

)

1


Y ⊤2,1 + O

(

1

2

)

Y3,1 +
1


Y3,2 + O

(

1

2

)

⎞

⎟

⎟

⎠

(21)

where Y3,1 is the unique (since �(D⊗ P ) ∩ �(−D⊗ P ) = ∅) solution of
Y3,1(D⊗ P ) + (D⊗ P )Y3,1 = N2Λ,

Y3,2 is the unique (since �(D⊗ P ) ∩ �(−D⊗ P ) = ∅) solution of
(D⊗ P )Y3,2 + Y3,2(D⊗ P ) = W0Y3,1 + Y3,1W ⊤

0 ,

Y2,1 is defined as
Y2,1 ∶= W1Y3,1(D⊗ P )−1

and Y1,1 is the unique (since �(AC ) ∩ �(−A⊤C ) = ∅) solution of
ACY1,1 + Y1,1A⊤C = −(W1Y

⊤
2,1 + Y2,1W

⊤
1 ).

From (21) it follows that lim
→+∞ Ẽ∞(
) = 0, and thus we can finally conclude that
lim

→+∞

lim
t→+∞

Ẽ(t) = lim

→+∞

lim
t→+∞

E(t) = 0, (22)
that implies the thesis of the lemma.
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